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Great importance is attached to improving the resilience of Interdependent Critical Infras-
tructures (ICI). In particular, recent advances in Supervisory Control And Data Acquisition
technology have allowed the implementation of optimization mechanisms that minimize
the impact of disruptions and improve recoveries. In order to give a fair assessment of
the resilience of a system, it is now necessary to take these optimization mechanisms into
account. However, few resiliency assessment frameworks do. This paper presents PyCAT-
SHOO —a platform recently introduced by EDF— capable of modeling complex dynam-
ics in a system. One such dynamic will be expanded upon in this paper: reconfiguration
capabilities that are based on optimization algorithms such as integer and mixed linear pro-
gramming. This will be illustrated through the resilience assessment of a simplified gas
and electricity transmission network, in which some consumers have a higher priority.
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1. Introduction

Much effort is directed towards maintaining a standard of resilience in Interde-
pendent Critical Infrastructures (ICI) such as the transmission and distribution of
electricity, water, gas and telecommunication. There are many variants in the def-
inition of the resilience of a system [1], which in turn give different mathematical
objectives.

In general terms, a system’s resilience is its ability to minimize the gap be-
tween its nominal state and states taken by the system after a disruptive event.
Resilience assessment frameworks should be flexible and adapt to different as-
sessment objectives, and to systems with different missions and different types of
disruptions. They should also be able to model complex systems without exces-
sive simplification.

Classical approaches which rely on boolean representation and structural as-
pects of systems, do not meet these requirements [2].

These approaches are especially not adapted to the presence of internal in-
terdependences in ICI systems. ICI systems may additionally be subject to two



kind of phenomena that renders classical methods ineffective: 1. Discrete stochas-
tic disruptions that induce system reconfigurations (which often rely on advanced
optimization algorithms [3] [4]). 2. Continuous deterministic physical phenom-
ena.

This paper presents PyCATSHOO [5] —a platform recently introduced by
EDF— which satisfies all the above mentioned requirements. This will be illus-
trated through the resilience assessment of a simplified gas and electricity trans-
mission network, in which some consumers have a higher priority.

The next section introduces the model of this system and the formulation of
the resilience indicators. Section 3 explains the main concepts of PyCATSHOO.
Finally, section 4 presents the assessment results and shows PyCATSHOO’s abil-
ity to factor in complex optimization objectives.

Figure 1. Gas-Electricity distribution network

2. Test-case: Gas-Electricity transmission system

Consider a gas and electricity network which supplies consumers with different
levels of priority. As shown in figure 1, this system comprises two gas sources,
“Source 1” and “Source 2”. The gas is transported through several pipes, called
“TRG i”, to two consumers: “Factory” and “Hospital”. The gas also supplies
two converters, “Converter 1” and “Converter 2”, which produce electricity. This



electricity is transported through lines called “TRE i” to two other consumers,
“Residential A” and “Residential B”. The network includes several connexion
nodes, “Ni”, which stand for convergence or bifurcation points.

The two sources are assumed inexhaustible and deliver constant capacities:
SCi. “Storage 1” and “Storage 2” behave like storage buffers. The volume of
their content V Si evolves according to the following set of ordinary differential
equations (1):

dV Si

dt
= qin

i −qout
i (1)

where qin
i is the incoming flow-rate to “Storage i” and qout

i is the outgoing flow-
rate. In addition, these two values are constrained by the following set of equalities
(2): {

qout
i = 0 i f V Si < lV Si

qin
i = 0 i f V Si > hV Si

(2)

where lV Si is the volume threshold under which the buffer is considered empty
and hV Si is the volume threshold above which there is an overflow. Each one of
the pipes “TRG i” and lines “TRE i” in the network has a maximal transportation
capacity TCi that the carried flow-rate Fi cannot exceed. This can be expressed by
the following set of inequalities (3):

Fi ≤ TCi (3)

Each consumer in the network has a gas or electricity demand CDi. The network
should provide each consumer with a flow CF in

i that is as close as possible to
the demand and that doesn’t exceed it. The network should additionally take into
account the priorities CPi of each consumer (in decreasing order, Hospital, Fac-
tory, Residential B and Residential A). All these constraints can be formulated by
inequalities (4) and by the maximization objective (5).

CFi ≤CDi (4)

max
(

∑
i∈CS

CPi×CF in
i

)
(5)

where CS is the set of consumers in the network.
In addition, we have to take into account other constraints deduced from the

material balances around every connexion node.
The mission of this network is to provide consumers with gas or electricity in

order to meet their needs. We consider that there exist 3 kinds of disruptions to
this mission:



1. The failure of a source, which makes its supply drop to a value drawn
uniformly between 0 and its nominal supply rate.

2. The failure of a transportation portion “TRG i” or “TRE i”, which makes
its capacity drop to a value drawn uniformly between 0 and its nominal
capacity.

3. The failure of a converter, which makes its capacity drop to 0.

This kind of system is widespread and can be critical when it supplies high
priority customers, industrial or dense residential areas.

System resilience can here be measured with two indicators. The first one has
to do with the system robustness and, the second one, with the recovery efficiency.

Figure 2. Evolution over time of a scenario performance

Figure 2 gives the evolution of performance in a specific scenario. In this
scenario we observe an instantaneous performance drop which corresponds to a
disruption. The magnitude of this drop gives an idea of the system’s robustness.
We then adopted the mathematical expression given in (6) as a robustness perfor-
mance indicator:

Irobustness =
pd

pn
(6)

where pn is the process performance, just before the disruption occurrence and pd

the minimal value reached after such an event.
As for the recovery efficiency, the indicator that we have adopted in this study



is given by equation (7).

Irecovery =

∫ TMission
0 Psdt∫ TMission
0 Pndt

=
PM

PM +PL
(7)

where Pn is the system’s performance in a nominal scenario and Ps is the system’s
performance of a mean scenario with disruptions.

3. PyCATSHOO basics

PyCATSHOO is a tool recently developed at EDF. It is currently released as free-
ware and can be downloaded from pycatshoo.org. PyCATSHOO is dedicated to
the probabilistic performance assessments of complex systems. In particular, it is
able to address hybrid models i.e. models which mix deterministic and continuous
physical phenomena on the one hand, and, on the other hand, discrete and stochas-
tic behavior. It is based on the theoretical framework of Piecewise Deterministic
Markov Processes (PDMP) [6] formulated as distributed hybrid stochastic au-
tomata. A PyCATSHOO model is a collection M= (O,P,L,I) where:

• O is a set of system components. Each component of this set contains:

– Vc, Vd and Vr are sets of respectively continuous variables, discrete
variables and variable references. Note that while the elements of
Vc and Vd are intrinsic variables, the element of Vr are references to
variables from other components.

– B is a set of message boxes. A message box contains incoming and
outgoing channels. An outgoing channel is linked to an intrinsic
variable (element of Vc or Vd). This allows the variable to be read
by other components. An incoming channel is linked to a variable
reference (element of Vr). This allows the variable to be written by
the outgoing channel of another component.

– A is a set of automata. An automaton contains a set Sa of states and
a set Ta of transitions. A transition is characterized by its source (el-
ement of Sa) and by a set of targets (subset of Sa). It is also charac-
terized by a condition and a probability distribution. The parameters
of this probability distribution are defined as functions of the com-
ponent variables. As for the condition, it is a boolean expression of
the component variables.
Note that a transition without probability distribution is determinis-
tic. It is called forced transition and is triggered when its condition
becomes true. When such condition involves continuous variables,
it defines a boundary crossing in the component PDMP. A transition



with a probability distribution is called spontaneous transition. It
provokes a spontaneous jump to a different component state.

– F is a set of actions that the system should trigger after specific
events occur. There are four kinds of events: entering or leaving
a state, a transition triggering, an automaton state change and a writ-
ing of a new value in a reference variable.

• P is a set of PDMPs. Each PDMP contains:

– References to the continuous variables managed by the PDMP. Their
values are computed by the PDMP by solving ordinary differential
equations or by using explicit expressions.

– References to different component methods. These methods imple-
ment explicit expressions or ordinary differential equations for con-
tinuous variable calculations.

– Forced transitions whose conditions involve continuous variables.
The conditions of such transitions define the boundaries of the
PDMP’s modes.

• I is a set of Mixed-Integer Linear Programming systems (MILP). Each
element of this set contains:

– References to variables managed by the MILP.
– References to different component methods which implement in-

equalities that belong to MILP.
– The objective function to maximize, which is constructed piece by

piece in different elements of the sets F which belong to different
components (elements of O).

• L is a set of linear equation systems. A linear equation system is almost
identical to an element of I, except for the fact that inequalities are re-
placed by equalities and that it defines no associated objective function.

4. Resilience assessment

By using PyCATSHOO to model the system presented in section 2, we can simu-
late response to failures and assess the resilience of the system (by calculating the
two indicators introduced in section 3: robustness and recovery efficiency).

Let us consider the response to a failure of the transportation portion “TRG 4”
at time 200h. For simplicity, we inhibit failures in all other components.

In figure 3 and in table 1, we observe that the higher the consumer priority,
the higher the resilience. In particular the hospital supply is not affected by the
disruption. This behaviour cannot be explained by the structure of the system:



Figure 3. System response to a loss of gas transportation portion

Table 1. Indicators of the system Robustness and recovery efficiency

Indicators Hospital Factory Residential B Residential A

Demand 80 100 50 30
Priority 4 3 2 1

Robustness 100% 83.73% 47.09% 19.06%
Recovery efficiency 100% 98.36% 94.88% 71.81%

it is due only to operating rules, which rely on optimization algorithms. This is
typically what most resilience assessment framework struggle to simulate, and
what PyCATSHOO is good at.

5. Conclusion

This article gives a simple but compelling example of the limitations of classical
resilience assessment frameworks. These limitations motivated the development
of PyCATSHOO. This framework gives more accurate resilience assessments by
making it possible to model —without excessive simplifying assumptions— com-
plex optimization mechanisms in systems which mix deterministic and continuous
physical phenomena, and discrete and stochastic behaviors.

Note that this does not come without a cost: PyCATSHOO requires more



computation time. This is mitigated using parallel acceleration and will be even
more so in the near future as current work at EDF is integrated into PyCATSHOO.
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