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Abstract: Many industrial processes depend on specific temperature and humidity levels to operate 

effectively, highlighting the importance of Heating, Ventilation, and Air Conditioning (HVAC) systems. 

Therefore, HVAC systems must be designed with an appropriate level of dependability that matches their 

criticality, posing two main challenges: overcomplicating them in the pursuit of higher reliability, which can 

be costly, or oversimplifying them, risking unreliability. To address these challenges, it is necessary to 

conduct reliability assessments to determine the appropriate design that fulfills the required level of 

dependability. 

Traditional reliability assessment methods may be insufficient as they might not consider all relevant 

information. Indeed, these methods cannot effectively leverage the information provided by physical models. 

In this article, we present a comprehensive reliability study that uses a simulation model created by coupling 

an HVAC system model (including a process control device to be cooled) with a model simulating the 

stochastic behavior of the entire system. The former refers to an existing physical model based on 

TAeZoSysPro, a MODELICA library of thermo-aeraulic component behaviors, while the latter is a 

PyCATSHOO model. We based this coupling on the Functional-Mockup Interface standard. 

Our study shows that traditional methods of reliability assessment can be overly cautious, which is beneficial 

for safety assessment but should not be overdone. We also found some cases where these methods were 

overly optimistic, and these issues must be addressed in a more specific manner. 
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1.  INTRODUCTION 

 

This article presents research conducted by EDF R&D aimed at developing a probabilistic performance 

evaluation method for complex systems. The purpose sought by this method is to overcome the limitations of 

conventional approaches which are primarily exploratory and rely on fault trees and event trees. Unlike the 

latter, the method discussed in this article belongs to the category of methods referred to as Model-Based 

Safety Assessment (MBSA). The scope of application of this method goes beyond safety assessment, 

enabling other system performance criteria to be evaluated. It operates by simulating a model that captures 

both continuous deterministic behaviours and either stochastic or deterministic discrete behaviours. 

Stochastic discrete behaviours represent event such as failures and repairs, while deterministic discrete 

behaviours simulate the consequences of control actions. Additionally, deterministic continuous behaviours 

replicate the evolution of one or more physical phenomena interacting with the system's material support. 

The interactions between physical phenomena and system components are significant, as they mutually 

influence each other. In safety studies, it is imperative to account for these mutual influences, as they can 

potentially compromise safety barriers or accelerate equipment failures by contributing to an increase in their 

occurrence rate. 

 

EDF R&D has developed a methodology to integrate various behaviours within a single model, enabling the 

formulation of physics equations governing deterministic continuous behaviours. The PyCATSHOO [1] 

simulation engine implements this method. It has been used to construct models for numerous safety-critical 

systems, predominantly in the hydraulic domain. These systems entail moderately complex physical 

phenomena, limited to material or heat balances, and material degradation laws. The modelling of such 

phenomena with PyCATSHOO has not necessitated substantial investment. 

 

In more complex contexts, modelling intricate physical phenomena, while possible with PyCATSHOO, may 

prove difficult. Thus, when a validated numerical implementation of such models exists, it is advisable to 
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refrain from creating new versions for use in safety evaluation models. Recent enhancements to 

PyCATSHOO [2] aim to improve its efficacy in such contexts by ensuring compliance with the Functional 

Mock-up Interface (FMI) standard [3]. FMI sets forth a communication protocol among simulation codes, 

simplifying the coupling of simulators developed by various parties, if they adhere to the FMI protocol. 

 

This article presents the second validation study of implementing FMI in PyCATSHOO. This study, closer to 

the concerns of probabilistic performance assessment studies of complex systems operated by EDF, serves as 

a proof of concept (POC). It is supported by a simplified thermo-aeraulic model of buildings with typical 

industrial electronic rooms, including the HVAC system and an associated simplified instrumentation and 

control approach. The proposed model is inspired by a test platform, called ZEPHYR, developed in the 

laboratories of EDF's R&D. 

 

The POC unfolded into two aspects, Firstly, a technical computing aspect aimed at verifying the feasibility 

of coupling between a PyCATSHOO model and a real simulator developed using the Modelica Dymola tool 

[4]. This simulator is encapsulated according to the FMI standard in what is referred to as a Functional 

Mock-up Unit (FMU). Secondly, a reliability aspect aimed to highlight the potential benefits of an 

assessment not solely based on a discrete behavioural model (failures/repairs) of the system components, as 

done by conventional reliability engineering methods. The approach implemented in this POC also utilizes a 

physical model to track the evolution of physical variables. These variables condition the occurrence of the 

undesired event and depend on the proper and improper functioning of the components of the studied system. 

 

In Section 2, we introduce the ventilation system model. Section 3 outlines the objectives of the reliability 

study, along with the data and considered assumptions. Section 4 describes the coupling procedure and 

summarizes the principles of the FMI standard. Section 5 presents the results. Finally, we conclude the study 

and discuss prospects. 

 

2. ZEPHYR MOCK-UP AND VENTILATION SYSTEM 

 

A numerical physical model of a typical industrial electronic room is proposed as depicted on Figure 1. The 

model is based on the simple thermal package of the TAeZoSyPro library [5]. This package provides 

elementary components to model typical thermal dynamic response of buildings by modelling main inertial 

components such as the concrete structure of the building or the main components of the studied rooms.   

 

Only the conservation equation energy is solved in a simple thermal model approach:   

 

 
            (1) 

 
 

 
Where ℎ=𝑐𝑝𝑇 is the specific enthalpy, 𝜌 the density, is the mass flux, is the thermal flux and 

 is a specific heat source. Thermal fluxes modelled are conductive and convective heat transfers, using 

Fourier and Newton law respectively. Radiant thermal fluxes are modelled using a Carroll Node [6], radiant 

absorbed energy is treated through the term . Equation (1) is then integrated on each elementary volume 

(room air node, wall concrete layer for example) to lead to a coupled system of equation to be solved to 

study the dynamic response.   

 

In the present study, the room studied is an electronic room housing thermal sensitive components which can 

fail in case of too high room temperature. To model the room thermal behavior in case of HVAC failure, 

core of the model is the studied room made of 6 elementary walls (floor, ceiling and 4 verticals walls) as well 

as the electronics cabinet which are lumped into a single component. Electronics cabinets are modeled as a 

heat emitter housed in box, heat being transmitted to environment either by convection or by thermal 

radiation to the casing which then exchanges heat with the other elementary entities of the room.  

 

Limit conditions of the studied room are imposed thanks to a globalized building model. This component is 

made of a global air node equivalent to the whole volume of the building that exchange heat with global 

equivalent buildings walls with global heat transfer modelling (globalization of convective and radiant 
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transfers through a single heat exchange coefficient). Outside limit conditions are imposed through Cooling 

Load Temperature Difference Method. Building air conditioning chillers are modeled through a negative 

power injected in the building mixing box to ensure supplied air to room is at the wanted temperature given 

the HVAC recirculation rate of the building. A proportional integral regulator (PI) is used to model an 

equivalent quasi static behavior of the chiller.   

  

Starting from a steady state with ventilation in operation, various HVAC failures can be simulated, and 

electronics room temperature rise can be studied. The HVAC failure accounted within this model are either 

failure of the chiller leading to supply outside air to the building without conditioning or the total loss of the 

HVAC fans leading to a loss of ventilation for the building.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. - left: TaeZoSysPro Physical model of typical electronic room housed in its building 

- right: details of the limit condition CLDT building 

 

 

3.  STUDY OBJECTIVES AND DATA 

 

3.1.  STUDY DATA 

 

The system studied includes two identical and independent buildings. Our simulation model represents a 

single instance of them. This is an FMU generated by the Dymola software using the TAeZoSysPro library. 

Each of the two buildings houses an instrumentation and control system (I&C). Both I&Cs operate in active 

redundancy to control the same safety-critical process. Their simultaneous failure is then a necessary cause 

of loss of control of the process. 

 

The loss of the I&C system in a building can occur due to two different reasons: 

 

1. Exceeding a critical threshold of indoor air temperature. 

2. Intrinsic failures following an exponential occurrence law, whose lambda parameter increases with 

the indoor air temperature according to the Arrhenius law [7]: 

 

 = λ0. 𝑒
[

−1.5

8617𝐸−5
.(

1

𝑇+273
−

1

𝑇0+273
)]

      (2) 

 

This equation illustrates the relationship between the failure rate and temperature. At T=T0=30°C, 

the rate is λ0 = 1.1E-5/h. The indoor temperature of a building may rise due to the operation of 

various electrical equipment, generating heat. This heat emission is an FMU parameter represented 

by a power density relative to the building's area. In our study, we considered three potential values 

for this density: 200, 300, and 400 W.m-2. 

 

The intrinsic failure of the I&C system is presumed to be reparable, with a repair rate of 1.1E-2/h. 
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To mitigate the rise in indoor air temperature, each building is equipped with an HVAC (Heating, 

Ventilation, and Air Conditioning) system. According to the FMU model, this HVAC system comprises two 

primary components: the chiller unit and the fan. Both components are susceptible to failures and repairs, 

with respective rates of λ= 1.1E-5/h and µ= 1.1E-1/h. 

 

Since the two buildings are identical, both the chiller units and the fans are vulnerable to common cause 

failures. Assuming a component state check every 24 hours, we establish the probability of occurrence of 

these common cause failures at the start of the check period as Pccf = 2.6E-5. Subsequently, we set the impact 

rate, which denotes the rate of conversion into actual material loss, to λccf = 3E-2/h. 

 

All this data is hypothetical and has been arbitrarily chosen. It is summarized in Tables 1 & 2, where rates 

are expressed in occurrences per hour. These figures have been appropriately adjusted by the PyCATSHOO 

model to match the calculation time step of the FMU, which is one second. 

 

 

Table 1. I&C dependability data 

 

 

 

 

 

 

 

 

Table 2. Fans and chillers dependability data 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.  Definition of indicators to be assessed  

 

In addition to verifying the technical feasibility of coupling a physical model code encapsulated in an FMU 

with a PyCATSHOO model according to the FMI standard, this study aimed to highlight the benefits of the 

hybrid approach compared to a conventional approach. First, we assessed two key indicators. 

 

1. System reliability assessed using the hybrid methodology supported by the PyCATSHOO simulation 

engine. In this method, the undesirable event is the loss of both instrumentation and control devices 

(I&C), either due to their intrinsic failures or after the temperature in the buildings housing them exceeds 

the critical threshold. 

 

2. System reliability assessed using conventional approaches. Here the undesired event occurs when the 

I&C devices are lost. However, in this approach, an I&C device is considered lost if its chiller unit or its 

fan fails. 

 

These calculations were carried out assuming that all components of the system are functional at time 0, 

considering three different values of thermal power density emitted within the two buildings: Q = 200W.m-2, 

300W.m-2 and 400W.m-2. 

 

 I&C dependability  

Failure rate at 30°C 0=1.1E-5/h 

Repair rate 𝜇 =1.1E-2/h 

 Chillers and Fans dependability data 

Failure rate =1.1E-5/h 

Repair rate 𝜇 =1.1E-1/h 

Check period 24h 

CCF probability Pccf = 2.6E-5 

CCF impact rate ccf   = 3E-2/h 
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Next, we evaluated the system's reliability using the hybrid methodology with an initiating event. We 

initiated the scenario by assuming the loss of the chiller units in both buildings at time 0, with no possibility 

of repair. Our aim was to assess the grace period under these conditions, referred to as the probabilistic grace 

period. This assessment was conducted for a thermal power density of 200 W.m-2 emitted in both buildings. 

 

These scenarios were simulated over a 72-hour duration. 

 

Subsequently, we conducted a similar calculation with the exception that we excluded any possibility of 

failure other than that of the initiating event. Additionally, we extended the simulation period to 140 hours. 

The objective was to compute the grace period conventionally and juxtapose it with the probabilistic grace 

period. 

 

4.  COUPLING PROCEDURE 

 

In this study, we coupled a PyCATSHOO model with a building physical model using the co-simulation 

principles of the FMI 2.0 standard. 

 

The building model, represented as an FMU, comprises three main components: the chiller unit, the fan, and 

the I&C device. Details concerning aspects such as civil engineering structures, equipment layout and 

heat/material exchange managed by the FMU were considered irrelevant to this dependability study. We 

focused on two aspects: firstly, on the evolution of air temperature, provided by the FMU, which determines 

the occurrence of the undesirable event; and secondly, on the ability to introduce failures and repairs to alter 

the states of these three components within the FMU. 

 

The FMI standard provides a framework for listing the variables of an FMU accessible for read and write 

operations by an external actor. It also specifies the functions facilitating these operations. In co-simulation 

mode, the FMI standard assumes that the physical model has its own differential equation solver. This aspect 

is particularly advantageous and promotes coupling because it eliminates the need to incorporate the physics 

of the phenomena studied in PyCATSHOO models and alleviates concerns regarding solver selection. 

Furthermore, the FMI standard defines functions allowing this resolution to be controlled, in particular those 

allowing one or more forward and backward time steps during simulations. PyCATSHOO builds on these 

functions and uses them in dichotomies to detect threshold crossings. 

 

In this study, we developed a PyCATSHOO model, serving as the driver to control the FMU encapsulating 

the physical building model, which will be henceforth referred to as the driver. As depicted in Figure 2, the 

driver encompasses the stochastic discrete behaviour of the three components: chiller, fan, and I&C. The 

building itself, along with the physical phenomena occurring within it, is represented in the PyCATSHOO 

model by a proxy linked to an instance of the FMU encapsulating the physical model. This linkage 

mechanism, facilitated by PyCATSHOO, enables the driver to treat the physical state variables of the FMU 

as its own variables. Consequently, it can access and even modify their values without necessitating the use 

of the FMI standard's API, thereby alleviating the need for driver designers to have expertise in the FMI 

standard.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Coupling principles 

 

As the two buildings are identical, a single FMU is employed to represent them. However, this FMU is 

instantiated twice to enable the independent evolution of the two building models during simulations. 
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In hybrid scenarios, PyCATSHOO models utilize the theoretical framework of piecewise deterministic 

Markov processes (PDMPs). This framework is practically realized through a computational entity within 

the PyCATSHOO library, called the PDMP Manager. It oversees the continuous variables of the system by 

managing the resolution of their governing equations, often embedded within the PyCATSHOO model. 

PyCATSHOO's ability in synchronizing the stochastic discrete behaviour of the system with the resolution of 

differential equations, facilitated by integrated solvers, enables this functionality. 

 

The integration of FMI standard functionalities into PyCATSHOO aimed to maintain its operational mode 

while shifting the equation-solving task to FMUs, as mandated by the co-simulation approach. Consequently, 

the PDMP acknowledges the FMU's presence, and the variables previously managed by the PDMP through 

solving differential equations are treated as variables derived from explicit expressions. Conversely, during 

each deterministic evolution period of the PDMP, delimited by stochastic discrete events, the PDMP 

assumes responsibility for conveying any system changes to the FMU. This is accomplished in the driver by 

straightforwardly updating the shared variables with new values. 

 

Figure 3 illustrates PyCATSHOO's operation in the absence of an FMU. It demonstrates the creation of a 

PDMP, the assignment of a continuous variable controlled by the PDMP through differential equation 

solving, and the designation of a method providing the derivatives of the continuous variables. 

 

Figure 4 illustrates the incorporation of an FMU into the system and the link between the FMU variables and 

the local variables of the PyCATSHOO model. 

 

In Figure 5, the FMU is integrated with the PDMP to support solving the differential equations. The 

variables managed by FMU become explicit for the PDMP. Additionally, a method is defined to be invoked 

by PyCATSHOO at the start of each deterministic period to assign new values to shared variables. 

 
pdmp = self.addPDMPManager("pdmpManager") 

self.addPDMPODEVariable   ("pdmpManager", self.v_temperature) 

self.addPDMPEquationMethod("pdmpManager", "odeMethod", self.odeMethod) 

Figure 3. Cases without FMU: Equation solving is carried out within the PyCATSHOO model. Here, 

"odeMethod" is a method implemented to provide the derivative expression of the continuous variable 

v_temperature. 

 

 
self.fmu = self.system().addFMU("MyFMUModels/TAeZo.fmu"), "FMU") 

self.v_temperature = self.fmu.variable("FMUTank.Temperature") 

Figure 4 Here, the PDMP is informed of the presence of an FMU, and the shared variables of the latter are 

linked with local variables of the driver. 

 

 
pdmp = self.addPDMPManager  ("pdmpManager") 

pdmp.addFMU(self.system().FMU("FMU")) 

self.addPDMPExplicitVariable("pdmpManager", self.v_temperature) 

self.addPDMPBeginMethod("pdmpManager", "beginMethod", self.beginMethod) 

Figure 5. When an FMU is used, equation solving is no longer the responsibility of PyCATSHOO. Hence, in 

this case, the continuous variable v_temperature is considered explicit, and the PDMP must solely ensure 

that the shared variables take the correct values at the beginning of each deterministic period. This is 

accomplished in the "beginMethod" method. 

 

 

5.  STUDY OUTCOMES 

 

5.1.  Technical feasibility 

 

The primary outcome of this research is the validation of the coupling approach facilitated by PyCATSHOO, 

which leverages the co-simulation framework of the FMI standard. This approach maintains the modelling 

methodology advocated by PyCATSHOO. Specifically, shared FMU variables are treated as local variables 
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by PyCATSHOO, eliminating the need for additional learning of modelling paradigms or the FMI standard 

itself. 

 

However, this approach necessitates that the FMU can save its state at a specific simulation point and restore 

it upon request by the driver. In our study, we utilized the Dymola tool, capable of generating FMUs with 

this functionality. Nonetheless, not all simulation engines offer this feature. 

 

FMUs are invariably accompanied by a human-readable XML file detailing their characteristics, 

functionalities, exposed variables, and parameters, including the ability to save and restore states. Thus, it is 

imperative to verify this capability before considering FMU utilization in coupling with PyCATSHOO. 

 

Additionally, in hybrid approach implementations, simulation duration tends to be considerable, often 

necessitating parallel computations beyond the capabilities of individual laptops or desktops. Consequently, 

high-performance computing (HPC) systems become imperative, and the drivers must be proficient in 

leveraging all available power computing for efficient operation. PyCATSHOO models inherently support 

parallelization via the MPI library [8], meeting this prerequisite. In this study, we used an EDF’s HPC 

cluster, from which we reserved 60 computing nodes each housing 48 cores. Simulation conditions are 

summarized in Table 3, while Figure 6 illustrates the utilization of a computing node during a simulation, 

demonstrating PyCATSHOO's parallelization efficiency by fully exploiting all cores across allocated nodes.  

 

 

Table 3. Simulated scenarios 

 

 

 
 

Figure 6. Cores Occupancy of a computing node during a simulation driven by PyCATSHOO 

 

Moreover, FMUs must be compatible with various operating systems on the targeted high-performance 

computers. However, not all simulation engines that generate FMUs offer equal portability across different 

operating systems. Hence, it's essential to remain vigilant about potential performance variations among 

FMUs generated by these tools for different operating systems. 

 

5.1. Outcomes and Contributions of the Hybrid Approach 

 

5.1.1. Assessment in case of initiating event 

 

This calculation assumes a simultaneous loss, occurring at time 0, of the chillers in both buildings. The aim 

is to ascertain the duration available for repairing at least one of the two chillers before the temperature 

surpasses the critical threshold, and even before the I&C systems encounter intrinsic failures, which become 

more likely with increasing ambient temperatures in both buildings. 

 

Scenarios Emitted Thermal 

power density  

Number of 

simulated sequences 

Simulated 

time 

Simulation 

time 

Without initiating events 200, 300 and 400 W.m-2 10+06 72h ~ 50mn 

With an initiating event 200 W.m-2 10+06 72h ~ 50mn 
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In such a scenario of chiller loss, a conventional Boolean approach would categorize the I&C systems as lost 

at time 0. Hence, no comparison of occurrence probabilities between the classical and hybrid approaches will 

be conducted at this stage. Our focus here lies in evaluating the grace periods. We conducted an initial 

calculation where we disabled any possibility of chiller repair while still considering the potential occurrence 

of other failures on the remaining components throughout the simulated period. The outcome of this initial 

calculation is depicted in Figure 7. 

 

 

 

 

 
 

Figure 7. Unreliability in case of simultaneous loss of both I&C according to the classic approach in blue and 

to the hybrid approach in red 

 

A closer examination of the unreliability curve, calculated using the hybrid approach (depicted in red in 

Figure 7), enables us to pinpoint the probability threshold deemed unacceptable by the operator. When 

plotted against the time axis, this reveals the timeframe preceding the attainment of this probability. This 

duration represents the grace period available for repairing at least one of the two chiller units. Assuming the 

unacceptable probability to be 1E-6, this grace period equates to 24 hours. Thus, the hybrid approach 

furnishes us with insights into a pragmatic grace period, encompassing potential failures that may manifest 

after the initiating event. Termed the probabilistic grace period, this information is evidently more cautious 

than the deterministic grace period typically derived by disregarding any possibility of post-initiator failures. 

Figure 8 illustrates the outcome of such a calculation, where we suppressed, in our model, all failures of the 

remaining system components. Only the assumption of the certain failure of the I&C systems, after 

surpassing the critical temperature threshold set arbitrarily at 55°C in our study, was retained. According to 

this approach, the deterministic grace period amounts to 84 hours. This period is notably more optimistic 

than the probabilistic grace period. 

Figure 8. Deterministic grace period calculated with the classical approach.  

84h 
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5.1.2. Assessments without initiating events 

 

As previously stated, we conducted simulations for three scenarios with different power density values 

emitted within the buildings: 200, 300, and 400 W.m-2. In these scenarios, we assessed the probabilities of 

the undesirable event, specifically the simultaneous loss of both I&C systems in both buildings. Our aim was 

to compare the results obtained from conventional calculations (green curves in Figure 9) with those derived 

from the hybrid approach advocated by PyCATSHOO (red curves in Figure 9). 

 

The notable observation concerns the difficulty of determining whether the conventional approach is 

optimistic or pessimistic. It is obvious that only simulations faithfully reflecting the real behaviour of the 

system can overcome this difficulty. This is demonstrated in Figure 9, where the conventional approach is 

pessimistic compared to the hybrid approach for thermal power densities of 200 and 300 W.m-2. However, as 

the rightmost curves in Figure 9 show, the conventional approach turns out to be too optimistic when the 

thermal power density is 400 W.m-2. 

 

 

 

 
 

Figure 9. Cumulative probabilities of loss of both I&C according to classical and hybrid approaches, for the 

three thermal power densities 200 W.m-2, 300 W.m-2, and 400 W.m-2. 

 

 

6.  CONCLUSIONS 

 

We carried out a probabilistic study by closely coupling a physical model with a model reproducing the 

discrete stochastic behaviour of an HVAC system. We based this coupling on the FMI standard using the 

encapsulation of the physical model in an FMU, while respecting the principles of the PyCATSHOO hybrid 

simulation engine. 

 

The technical feasibility of this integration has been demonstrated, and the effectiveness of the simulation 

drivers produced by PyCATSHOO has been highlighted, particularly their capability to handle parallelism 

on high-performance computing platforms. 

 

Furthermore, we have shown that integrating a discrete stochastic world with a continuous deterministic 

physical world in probabilistic studies can provide valuable insights into various performance criteria, such 

as reliability and safety. The first insight regards the concept of a probabilistic grace period, offering a more 

realistic perspective than the classical notion. The second insight relates to the optimistic or pessimistic 

nature, crucial in safety studies. Our findings suggest that this nature depends on the study's data and that the 

hybrid approach we employed can objectively reveal it. 

 

Although this study demonstrates the suitability of the hybrid approach for complex systems, additional 

efforts are still needed to address the computational time challenge. High-performance computing 

contributes to this effort, alongside our ongoing work to accelerate Monte Carlo simulations via variance 

reduction techniques such as importance sampling suitable for piecewise deterministic Markov processes.  
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The next phase is to formulate a methodology for developing surrogate models for our physical models, 

suitable for integration with discrete stochastic models. This objective poses two main challenges. Firstly, the 

substitution model must reproduce the multimodal character of the original physical model, which is subject 

to stochastic events that modify its mode of operation during a simulation. Secondly, the multitude of modes 

that the substitution model must be able to reproduce means that learning requires a huge amount of data. 

Although this data comes from simulations using the original model, the learning can be a real challenge. 
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