
Simulation of stochastic blockchain models
Workshop on Blockchain Dependability

Pierre-Yves Piriou
EDF R&D

Chatou, France
pierre-yves.piriou@edf.fr

Jean-Francois Dumas
EDF R&D

Chatou, France
jean-francois.dumas@edf.fr

Abstract—This paper build the foundations of a simulation tool
for blockchain-based applications. It takes advantage of the huge
expressiveness and extensibility of PyCATSHOO framework to
deal with the important variability of blockchain implementations
and properties of interest. A simple stochastic model of generic
blockchain-style distributed consensus system and associated
performance indicators are proposed (performance in terms
of consistency and ability to discard double-spending attacks).
Monte Carlo simulations are applied to assess the indicators and
determine their sensitivity to the variation of input parameters.

Index Terms—Blockchain, Markov process, stochastic au-
tomata, Monte Carlo simulation, consistency, double-spending
attack, PyCATSHOO

I. INTRODUCTION

Blockchain technology recently benefits from a widespread
interest because of its huge potential for securing decentralized
applications. In practice, it refers to an important range of
implementations (Bitcoin [1], Ethereum [2], Hyperledger [3],
etc.) sharing a common purpose, basically: to register data
on a cryptographic ledger written by a peer-to-peer network
performing a protocol to ensure a consensus (an edition is
symbolized by a block chainage). Those implementations are
characterized by a set of primitives: consensus protocol, type
of registered data, fork resolution rule, etc. Each of them have
advantages and drawbacks and for a given use case, it is
often non-obvious to determine a priori what implementation
will be the most relevant. A tool to assess dependability and
performance of a solution soon in the design process would
be a major asset to assist the engineering of blockchain-based
applications. The tool should be based on a generic blockchain
model, that can be used in the raw to evaluate properties across
implementations or be customized to fit with a particular one.
This paper introduces PyCATSHOO framework to build the
foundations of such a tool. PyCATSHOO is a Python library
shaped to build hybrid stochastic automaton developed by EDF
R&D. It comes with a Monte Carlo simulation [4] engine to
assess probabilistic attributes of the model, in an easier way
than with a tedious mathematical analysis of the model. In
particular, this paper shows how well-known -while difficult to
prove- results on blockchain consistency and ability to discard
a double-spending attack can be computed by easy to set up
Monte Carlo simulations.

This work has been funded by the EDF R&D project DURIN (Dependable
Uses of Reliable blockchaIN).

Section II compares the paper to a selection of related
works. In order to clarify our approach while staying as generic
as possible, a lightweight stochastic model of blockchain
are proposed in section III (only the blocks appending and
broadcasting aspects are considered). The model is thereafter
implemented into PyCATSHOO framework in section IV. The
concepts of blockchain protocol consistency and ability to
prevent from double-spending attack are therefore interpreted
into our stochastic framework and some related probabilistic
indicators are assessed using PyCATSHOO in section V. Fi-
nally, section VI concludes this paper and proposes directions
for future works.

II. RELATED WORKS

Current state of the art on blockchain modelling can be
split into two categories: deterministic and stochastic. The first
one is generally associated to formal proof purposes, either on
blockchain protocol itself or on smart contract built on top of
it.
• [5] proposes a Coq-aided proven ”agnostic” blockchain

protocol (currently the consistency is ensured only if the
network topology is a clique, but stronger guarantees are
targeted by authors for future works).

• [6] exploits infinite Mealy machines’ expressiveness to
capture the blockchain construction process in a generic
way and describes properties a protocol should possess
to build a consistent blockchain, with two qualities of
the criteria: strong and eventual (this contribution will be
discussed in subsection V-A).

• [7] proposes a communicating automata model of the
triptych: blockchain construction, smart contract, users
behaviour (honest and hacker) and exploits the statis-
tical model-checker BIP to quantify the risk for an
implementation to not satisfy its specification ([8] pro-
poses a NuSMV model with the same idea of three-
fold behaviour and the same purpose of model-checking
although differently developed).

Contributions on stochastic modelling of blockchain are
mostly shaped to compute probabilistic attributes analytically,
even if the last referenced paper below validates its model by
a simulation.
• The original Nakamoto’s paper introducing Bitcoin [1]

provides the first results on assessing the risk that an

attacker could win the race against honest peers in a
blockchain.

• [9] shows the security of Bitcoin protocol, which is
reduced to two properties: persistence and liveness. Actu-
ally these properties are based on probabilistic indicators,
namely the common prefix between blockchain copies
and the chain quality that measures the influence of
adversarial peers on the blockchain. This approach has
shown its genericity in [10], where it is applied to extend
the proof on the more generic protocol GHOST [11]
(adopted by several blockchains including Ethereum).

• [12] models the evolution of partition between honest and
adversary nodes along the blockchain as a 1-dimensional
random walk. This model allows them to demonstrate in-
teresting results on safety of several blockchains, namely
Bitcoin-NG, PeerCensus and BizCoin (this contribution
will be discussed in subsection V-B).

• Finally, [13] models the mining process by an inho-
mogeneous Poisson process. It shows that when the
hash rate increases exponentially, the difficulty control
implemented by Bitcoin protocol works so that the block
rate -i.e. the mean time between the mining of two
consecutive blocks- converges to a constant (10 minutes
in practice). Then it proposes an improvement of such
control to speed up the convergence. Its analytic results
are confirmed by simulation and confronted with actual
Bitcoin and Namecoin histories.

While the above referenced contributions give complemen-
tary keys to build a blockchain generic model and define
meaningful performance attributes, none of them propose a
framework to ease the tuning of the model and exploit Monte
Carlo simulation to assess attributes, which is a convenient
way when models become complex1.

III. BLOCKCHAIN STOCHASTIC MODEL

A basic stochastic model is proposed in this section to
capture the block creation and broadcasting process. To stay
as generic as possible, blocks are in this model abstract
objects that should be elicited to capture the underlying ledger
evolution (what implies to define the type of registered data
and the registering mechanisms).

A. Blocktree data structure

A blockchain is actually a particular branch of a rooted
tree, i.e. a directed acyclic graph such as all nodes have a
unique father except one, called the root, which has none. In
blockchain jargon, the root is called the genesis block. Calling
B the set of blocks, we can formally define a blocktree.

Definition 1. A blocktree bt ∈ BT is a 2-tuple 〈B,E〉, where:
• B ⊂ B, is a finite non-empty set of valid2 blocks,

including at least one element b0 (the genesis block).

1Note that this list of article is a selection of contributions that have most
inspire this work but do not target any completeness.

2The definition of a block’s validity comes with the elicitation of a block.

• E ⊂ B2 such as it exists a unique path from b0 to any
other block.
Formally, ∀b ∈ B\{b0},∃n ∈ N∗,∃(b1, ..., bn) ∈ Bn|
bn = b ∧ ∀i ∈ [[1, n]], (bi−1, bi) ∈ E
n is called the depth of b (and its associated path).

To expand a blocktree bt = 〈B,E〉 from a block b ∈ B
with a new block b′ /∈ B results in the blocktree bt′ = 〈B ∪
{b′}, E ∪ {b, b′}〉. The expansion operation is then a partial
mapping from BT × B2 to BT .

Moreover a blockchain protocol defines a total order � over
B, preserving E, i.e (b, b′) ∈ E =⇒ b′ � b. This order is the
cornerstone of the protocol since the definition of the so-called
blockchain is built on it.

Definition 2. Given a blocktree bt = 〈B,E〉 and a total order
� over B, the blockchain is the unique path from the genesis
block b0 to the last block bl = max�B.

B. Distributed handling of the blockchain

A blockchain is built by a network of processes applying
sequentially the expansion operation starting from the inital
blocktree 〈{b0}, ∅〉. In practice, every process refers to its own
view of the blocktree and strives to build a consensus with each
other on the shared blockchain while increasing its depth. For
this purpose, they continuously try to ”build” valid blocks.
When such valid block is found by a process, it expands its
local blocktree from its last block (i.e. the last block of its own
view of the blockchain) and broadcasts it to the others. When
a process receives a new block from another one, it updates its
local blocktree expanding it with the new block. In practice,
forks may actually be observed due to blocks broadcasting
delay.

Building a new valid block is an operation that may take
many forms depending on protocols. It consists at least to
provide a proof that the process is legitimate to append a
block. The two widely considered kind of such proof are
called Proof-of-Work (PoW) and Proof-of-Stake (PoS). In case
of a PoW-based protocol, the process has to solve a hard
computational problem (often a constrained hashing), whereas
for a PoS-based protocol, it has to show that it is deeply
involved in the blockchain (in practice a proof that it holds a
lot of tokens). We propose to model the chance for a process i
to build a valid block by a unique parameter mi ∈ R+, called
the merit (which symbolizes for example the process hashrate
in case of PoW or the amount of its balance in case of PoS).
Then we introduce an abstract oracle that randomly chooses
a process to build each new block according to their merit (a
similar idea can be found in [6]). A blockchain protocol is
usually designed in order that a block is appended regularly
with a constant mean block time tb ∈ R+ (e.g. 10 minutes
for Bitcoin, 12 seconds for Ethereum). We propose then a
Markovian model for the oracle behaviour.

Definition 3. The oracle behaves as a continuous Markov
process which infinitely selects a new process i among a set

of processes P to build a new valid block, according to its

normalized merit m̂i =
mi∑

j∈P
mj

, with a rate λ =
1

tb
.

The delay from a block creation by a process i to its
reception by a process j depends on several network-related
factors (like topology, bandwidth, instantaneous load). As a
first approximation, we can abstract these factors introducing
a global mean network transit time tn ∈ R+. But we can be a
bit more precise to consider network asymmetries, by defining
a mean network transit time tn,i for each process i. With
this refinement, the mean time to transfer a block between
two processes i and j is

tn,i + tn,j
2

. Hence the last definition
snippet of our model can be stated.

Definition 4. The reception by a process i of a block appended

by a process j 6= i occurs with a rate µi,j =
2

tn,i + tn,j
.

Figure 1 represents by intention the system of Markov
chains that can be built from Definition 3 and 4.

Fig. 1. Markov chain system modelling a blockchain protocol

C. Discussion
The proposed model makes several simplifying assump-

tions, what are discussed hereafter:
• In practice, for protocols that relying on particular con-

sensus mechanisms (like Proof of Work), all distributed
processes try to build a valid block in parallel. It is
possible that several processes succeed this task in a
very short period, what cause a fork between concurrent
branches, until a new block is chained after one of them
and is received by all other processes. Since our oracle
selects a process with a probabilistic time, this scenario
is still possible although less probable. The oracle could
be refined to increase the chance for several processes to
append a new block in a short period but it would be
more difficult to parameter.

• For some other protocols, the time between to block
creation is constant. This variant of the model could be
easily set in the implemented model (we will see in next
section that PyCATSHOO allows to declare deterministic
delayed transitions as well as stochastic ones).

• All the distributed processes share a global clock for
timestamping the blocks creation through the oracle ab-
straction. In reality, each process timestamps its blocks

according to its own clock what may provoke local
inconsistencies -what should be fixed by the protocol-
and bias in network transit times. But we argue that at
this modelling level, this phenomenon can be neglected
and abstracted into the mean network transit time. More-
over, this assumption results in lowering significantly
the simulation time what is essential to perform Monte
Carlo simulation (for which a lot of histories has to be
simulated).

• The merit of each process is assumed known and fixed
during the scenario. To consider variable merits with
uncertainties on their values constitutes a way to refine
the model.

An advanced mathematical analysis of the model would al-
low to determine the bias it introduces in comparison to a given
blockchain protocol, but it is not in the scope of this paper. We
will see in section V that this lightweight model is sufficient
to rediscover without pain well known results, what can either
be observed on real implemented protocols execution (what
spend a lot of time), or be obtained by a rigorous mathematical
analysis. But reasoning on our model to solve the dependence
between the parameters and indicators on blocktree shape and
more generally, on protocol consistency is a tedious work
(and even more so on more complex models). Next sections
introduces PyCATSHOO framework and shows how to take
advantage of it to assess these indicators.

IV. PYCATSHOO IMPLEMENTATION

PyCATSHOO3 is the combination of a Python library to
describe distributed hybrid stochastic automata and a tool to
perform Monte Carlo analysis on models. It is a convenient
approach to perform probabilistic assessments on systems that
combines both discrete and continuous behaviours4. The main
exploitation of PyCATSHOO at EDF is for model based safety
analysis of power plants (discrete and continuous behaviours
are caused by respectively failure/repair events of components
and evolution of physical variables such as pressure and
temperature). In this section, some principles of PyCATSHOO
paradigm are recalled (it can also be found in [14] and [15]),
then the implementation keys of the model defined in section
III in this framework are provided.

A. Reminder on PyCATSHOO principles

A PyCATSHOO model is a system of components that
communicates through message boxes. Each component is
defined by a 4-tuple 〈V,B,A,R〉, where:
• V = I ∪ E is a set of variables partitioned into a subset

of internal variables and a subset of references to external
variables (next we denotes by V the set of all possible
valuations of V);

• B ⊆ P(V) is a set of message boxes declaring output and
input ports through which internal and external variables
are respectively exported and imported;

3PyCATSHOO is freely accessible at http://pycatshoo.org and should be
open source soon.

4Note that the model introduced in this paper is purely discrete.

• A is a set of stochastic automata;
• R = D ∪ C is a set of evolution rules of the component

state variables partitioned into a subset of rules that are
applied on the occurrence of discrete events and the
subset of rules determining the continuous dynamics.

A stochastic automaton a ∈ A being defined by a 3-tuple
〈S, s0, T 〉, where:

• S is a set of states;
• s0 ∈ S is the initial state;
• T = Ts∪Td is a set of transitions t which is itself defined

by a 4-tuple 〈s, g, d, p〉, where:

– s ∈ S is the origin state;
– g ∈ V −→ {True, False} is a guard built on the

variables determining the validation condition of the
transition;

– d ∈ R+ is a parameter used to generate a delay
before firing a validated transition. If the transition
is of kind stochastic (t ∈ Ts), the delay is randomly
chosen according to an exponential law of parameter
d, whereas if the transition is of kind temporized (t ∈
Td), the delay is simply the value of the parameter
d. Note that d can be specified using variables in
V such that its value may change with the model
evolution.

– p ∈ S −→ [0, 1]|
∑
s∈S

p(s) = 1 is a probabilistic

distribution on state space to select the destination
state (if a single destination state s ∈ S is possible,
then p(s) = 1). Once again, p can be specified using
variables in V .

An evolution rule r ∈ C (determining the continuous
dynamics of variables) are specified as ordinary differential
(or not) equations, whose resolution for a given simulation
instant is handled by the simulator engine. The other kind of
evolution rule r ∈ D (determining the discrete dynamics of
variables) are specified as functions called sensitive methods
because they are executed when a specified event occurs:

• when the simulation start (used to specify the initial
assignation of the variables);

• when a transition is fired;
• when an automaton state is left or entered (the sequential

order for the three events associated to the firing of a
transition t from state s1 to state s2 is quite intuitive:
leaving s1 → firing t→ entering s2);

• when a referenced external variable moves (used to
propagate the effects of an event occuring in an other
component).

Finally, components can be connected through their message
boxes. A connexion between x and y through their respective
message boxes bx and by is valid if and only if any imported
variables by one is an exported variables by the other. For-
mally: {

bx ∩ Ex = by ∩ Iy
by ∩ Ey = bx ∩ Ix

The formal semantics of a PyCATSHOO model will not be
detailed in this paper. Let us only state the general idea of what
the simulator engine provides: a finite history of variables’
assignments, randomly generated according to stochastic and
deterministic evolution of the model which is specified by
components’ automata and rules. Then this engine can be
exploited to assess probabilistic indicators on the model (e.g.
the mean value of a variable) taking advantage of Monte Carlo
simulations.

The main benefit to exploit PyCATSHOO framework is that
it inherits from the expressiveness of Python itself. Indeed, al-
though the types of PyCATSHOO variables are basic (boolean,
integer, float, string), convenient intermediate objects can be
created and manipulated through (discrete) evolution rules
alongside the proper PyCATSHOO variables to ease the model
specification.

B. PyCATSHOO model of blockchain

The model described in section III can be implemented into
PyCATSHOO framework, defining three components, namely:
the Process, the Oracle and the Blocktree. An overview of
these components is depicted on Figure 2.

A block is implemented as a pure Python object, fully
determined by a (unique) hash, its father block (None for
the genesis block), a timestamp and the author process
that build it (its depth is simply the depth of its father
incremented). A Python dictionary stores all blocks and is
used to retrieve a block instance given its hash. We define
a basic order for blocks (this order is total since two blocks
cannot be built at the same instant):

b1 � b2 ⇐⇒ ∨

∣∣∣∣∣∣
b1.depth > b2.depth

∧
∣∣∣∣ b1.depth = b2.depth
b1.timestamp > b2.timestamp

The (unique) Blocktree component has always a perfect
knowledge of already appended blocks. For a process (identi-
fied by a unique address), a block can be either known (yet
received) or pending (not yet received). The block creation
is scheduled by the oracle firing the transition from state
waiting to state tokenGenerated (parameter λ is the
inverse of meanBlockTime as stated in section III). When
this transition is fired, the following instantaneous sequence is
performed:

1) the sensitive method selectProcess randomly se-
lects one of the process according to its merit and
assign the variable tokenHolder with its address;

2) tokenGenerated becomes True5 what triggers the
transition from working to claimTkn for each pro-
cess;

3) the transition from tokenGenerated to waiting is
fired;

4) the transitions from claimTkn to tknHeld then to
working are fired only for the selected process;

5To declare an automaton state as a message box port is a convenient
syntactic way to define a boolean variable which is True whenever the state
is active.

Fig. 2. Overview of the PyCATSHOO model of a blockchain generic protocol

5) the sensitive method consumeToken (of the token
holder) creates a new instance of Block (whose the
timestamp is the current simulation time and the father
is the last block known by the process), appends it to
knownBlocks and updates lastBlock with its hash;

6) the modification of a variable lastBlock has the ef-
fect to call the method appendBlock of the Blocktree
component. The method append the new block to its list
Blocks, then updates the variable appendedBlock;

7) the guard of the transition from claimTkn to
working is now validated for all remaining pro-
cesses. The transition is fired and the associated method
newPendingBlock append the new block to their list
pendingBlock;

Reception of pending blocks by processes is scheduled by
a set of automata (parameter µ is computed from the variables
meanTransitTime of the receiver and the block author as
stated in section III). Because several blocks can be in recep-
tion in parallel, a block may arrived before its father, then the
guard of the transition between arrived and idle ensures
that a block is actually transferred from pendingBlocks
to knownBlocks after its father. This transfer operation
is performed by the sensitive method receive which also
computes the new blockchain to update the lastBlock
variable.

The code size is only around 500 lines in Python language6.
As said in last subsection, our model can be easily enhanced
in many ways, for instance to fit a particular blockchain
paradigm, to consider faulty behaviour of processes or to take
into account variable probabilistic input parameters.

Next section shows how the PyCATSHOO Monte-Carlo
simulation engine can be exploited to assess performance
indicators of a blockchain protocol in terms of consistency
and ability to discard a double-spending attack.

V. ASSESSMENT OF BLOCKCHAIN ATTRIBUTES

A. Blockchain consistency assessment

The consistency is a property of great interest to qualify the
performance of a blockchain protocol. Informally, a protocol
is consistent if its processors succeed to build a consensus
on the blockchain. Several formal definitions are proposed in
literature. In particular, [6] defines two kind of consistency
criteria, built on the prefix relation (a chain c1 prefixes another
chain c2 if and only if the last block of c1 is an ancestor of
the last block of c2):

• the strong consistency holds when it exists a prefix rela-
tion between all processes’ blockchains. In other words
processes never fork.

6The code is available at http://pycatshoo.org/Model Samples.html

TABLE I
ASYMPTOTIC VALUES OF THE CONSISTENCY INDICATORS FOR SEVERAL PARAMETERS ASSIGNMENTS

(In each case, upper, middle and bottom values are respectively the consensus probability, the consistency rate and the worst process delay.)

r
n 2 3 4 6 10 20 40 60 100

0.1
0.913 0.868 0.839 0.803 0.761 0.702 0.657 0.635 0.598
0.955 0.938 0.930 0.922 0.914 0.909 0.908 0.908 0.907
0.094 0.143 0.180 0.220 0.271 0.347 0.415 0.442 0.505

0.2
0.837 0.762 0.718 0.660 0.587 0.505 0.455 0.412 0.368
0.912 0.884 0.870 0.858 0.844 0.832 0.831 0.830 0.832
0.189 0.279 0.338 0.418 0.533 0.671 0.771 0.853 0.945

0.5
0.686 0.559 0.479 0.391 0.304 0.231 0.180 0.168 0.088
0.823 0.766 0.735 0.705 0.683 0.663 0.656 0.655 0.646
0.424 0.614 0.754 0.918 1.080 1.264 1.373 1.406 2.111

0.7
0.602 0.453 0.369 0.280 0.192 0.118 0.073 0.054 0.037
0.769 0.698 0.665 0.627 0.598 0.579 0.572 0.568 0.559
0.607 0.895 1.070 1.311 1.617 1.973 2.316 2.500 2.761

0.99
0.515 0.347 0.264 0.173 0.109 0.054 0.026 0.017 0.009
0.715 0.625 0.586 0.538 0.513 0.484 0.475 0.467 0.463
0.844 1.238 1.476 1.810 2.169 2.615 3.021 3.279 3.554

Fig. 3. Interpolation of asymptotic values of the consistency indicators for 2 ≤ n ≤ 100 and 0.1 ≤ r < 1 (red is a better consistency than blue)

• the eventual consistency holds when the greatest common
prefix between all processes’ blockchains always eventu-
ally grows.

For our model, it is clear that the strong consistency (i.e.
the fork probability equals 0) is guaranteed only if the mean
network transit time tn approaches 0. On the other hand, the
perpetual eventual growth of the greatest common prefix is still
possible while 0 < tn < tb, although more or less frequent de-
pending on parameters. Intuitively, the lower the number n of

processes and the ratio r =
tn
tb

are, the better the consistency

is. To validate this intuition while refining the characterization
of consistency, we introduce three indicators, which can be
seen as three complementary metrics of consistency (next we
call the absolute blockchain the most advanced among all
locally viewed blockchains according to the order �):

• consensus probability: the probability that all processes
agreed on the absolute blockchain (higher is better).

• consistency rate: the mean proportion of processes agreed
on the absolute blockchain (higher is better).

• worst process delay: the mean length difference between
the absolute blockchain and the greatest common prefix
(lower is better).

To ease the results understanding, we assume a perfect
symmetry of the network and a perfect fairness between
processes, formally:

∀(i, j) ∈ P2,

{
tn,i = tn,j
mi = mj

Fig. 4. Time evolution of the consistency indicators for n = 10 and r = 0.2

Figure 4 shows the time evolution of the three indicators
for n = 10 and r = 0.2, estimated running a Monte

Carlo simulation (100000 histories performed in 9.5 minutes
on a single core of an i7-6700HQ CPU). We can see that
these indicators approach rapidly an asymptotic value (the
simulation time is 2 ∗ tb then the mean number of appended
block is only 2). Table I reports the values of these asymptotes
for a set of parameters’ assignments. An interpolation built
from these points is represented on Figure 3. These results
show that the consistency is more sensitive to variations
of r than to variations of n. Moreover, the higher n and
lower r are, the less consistency depends on them. As it
happens, for classical blockchain protocols (typically Bitcoin
and Ethereum), r is low and n is high. Extrapolating our results
lead to confirm that classical blockchain protocols have a good
consistency performance (when applied in a symmetric and
fairness network of processes): the mean proportion of up-to-
date processes is around 90%, with more than 50% chances
that this proportion reaches 100%, and when not, the chances
that delayed processes have a lag of more than one block is
low (the worst process delay trend is around 0.5). We can then
conclude that the probability that the eventual consistency will
be violated for classical blockchains (that are consistent with
the assumptions we made) are negligible.

B. Protocol ability to discard a double-spending attack

We propose now to analyse with our model another widely
studied blockchain performance indicator: the risk that mali-
cious processes manage to perform a double-spending attack.
We consider the approach developed in [12] where three Bit-
coin-based blockchain protocols are under analysis: Bitcoin-
NG, PeerCensus and BizCoin. Our Monte Carlo simulation
results meet the results obtained in this paper by a mathemat-
ical analysis. Due to a lack of place, we will detailed only the
comparative study for the BizCoin protocol which corresponds
to a compromise between Bitcoin-NG and PeerCensus.

The model
An adversary controls a proportion µ ∈ [0, 1] of the whole
set of processes in order to perform double-spending attacks7.
Consequently, the proportion of honest peers corresponds to
1− µ. The state of the blockchain is defined by Bk = (h,m)
with k the epoch that indicates the state in which k blocks
have been chained after the genesis block, h and m correspond
respectively to the number of honest and malicious appended
blocks taking into account the assumption that the genesis
block is honest. Thus the only possible state of the blockchain
at epoch 0 is B0 = (1, 0). At every epoch, with a blockchain
in state Bk = (h,m), the next block can be malicious with a
probability µ making the next state becoming Bk+1 = (h,m+
1) or honest with a probability 1 − µ making the next state
becoming Bk+1 = (h+ 1,m). Formally:

P{Bk+1 = (h+ 1,m)|Bk = (h,m)} = 1− µ
P{Bk+1 = (h,m+ 1)|Bk = (h,m)} = µ

Figure 5 depicts the Markov chain modelling this behaviour.

7µ here should not be confused with the mean reception rate introduced in
section III

Fig. 5. Markov chain modelling the evolution of the partition between honest
and malicious blocks in a blockchain

Finally, several assumptions are made in this article, that
we interpret through the model introduced in section III:

• every processes (honest or not) have the same chance
to append a new block, what corresponds to a perfect
fairness (all merits are equal).

• the block generation time is constant (and not stochastic).
• the network transit time is not taken into account, what

we can reproduce by setting the ratio r at an extremely
low value.

BizCoin protocol
In this particular protocol, when a process submit a new block,
there is a vote among the processes that have appended the
w−1 last blocks (w ≥ 2) to prevent a double-spending attempt.
The state of the blockchain is safe (∈ Sw) if less than one third
of these w − 1 processes is malicious and polluted (∈ Pw)
otherwise. Formally (let mi = 1 if the process that append
the i-th last block is malicious and mi = 0 otherwise):

Sw = {(m0, ...,mw−1) ∈ {0, 1}w|
w−1∑
i=0

mi ≤ (w − 1)/3}

Pw = {(m0, ...,mw−1) ∈ {0, 1}w|
w−1∑
i=0

mi > (w − 1)/3}

Figure 6 depicts the discrete-time Markov chain modelling
the BizCoin protocol for w = 4. Safe and polluted states are
respectively coloured in green and red.

The asymptotic probability that the blockchain state is safe
at epoch k (i.e. the probability to be in a green state in the
Markov Chain) is given by theorem 3 in [12]:

P{Wk ∈ Sw} =
(w−1)/3∑

l=0

(
w

l

)
µl(1− µ)w−l (1)

Fig. 6. Markov chain modelling BizCoin protocol for w=4

with its limit:

lim
w→∞

P{Wk ∈ Sw} =

 0 if µ > 1/3
1/2 if µ = 1/3
1 if µ < 1/3

Comparative study
On figure 7 are traced in plain line the results obtained using
our simulator representing the proportion of safe execution of
BizCoin depending on µ for four different values of w (what
correspond to 1 hour, 6 hours, 1 day and 1 week, if we consider
that a block is appended every 10 minutes, like with Bitcoin).
Corresponding theoretical curves computed thanks to formula
1 are also traced in dashed line. We can see that both curves
are overlapped.

Fig. 7. Probability of being in a safe state depending on µ for different values
of w

We can see that the more w increases the more the variation
of the probability of having a blockchain in a safe state is
concentrated around the value µ = 1/3. This means that with
a value of w high enough, if µ < 1/3 the probability of
observing a double-spending attack is insignificant.

Let us remind that this quality analysis omitted the network
transit delays. Taking into account these delays in a mathe-
matical analysis would be very tricky whereas made so much
easier with the simulator as the only thing to change is the
value of r.

VI. CONCLUSION AND PERSPECTIVES

An original although simple continuous-time stochastic
model of blockchain protocols has been defined in this paper.
Moreover, it proposes an implementation of the model in
PyCATSHOO framework, that allows us to perform Monte-
Carlo simulations to obtain interesting probabilistic results on
consistency and ability to discard double-spending attacks of
blockchain protocols.

More generally, this work lays the foundations of a simu-
lation tool for blockchain-based application since the expres-
siveness of PyCATSHOO is wide enough to envisage many
refinement ways: to consider dynamic evolutions of stochastic
parameters, to model higher level layers (in particular trans-
actions and ledger), to integrate smart contracts logic or to
take into account the execution environment including off-
chain continuous dynamics.

REFERENCES

[1] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, 2008. https://bitcoin.org/bitcoin.pdf.

[2] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Technical report, 2014. http://gavwood.com/paper.pdf.

[3] E. Androulaki et al. Hyperledger fabric: A distributed operating system
for permissioned blockchains. In 13th EuroSys Conference, page 30,
Porto, Portugal, April 2018. ACM.

[4] C.Z. Mooney. Monte Carlo simulation. Sage Publications, 1997.
[5] G. Pı̂rlea and I. Sergey. Mechanising blockchain consensus. In 7th

SIGPLAN International Conference on Certified Programs and Proofs
(CPP), pages 78–90, New York, NY, USA, 2018. ACM.

[6] E. Anceaume, A. Del Pozzo, R. Ludinard, M. Potop-Butucaru, and
S. Tucci-Piergiovanni. Blockchain Abstract Data Type. Research report,
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6,
LIP6, Paris, France, February 2018.

[7] T. Abdellatif and K.-L. Brousmiche. Formal verification of smart
contracts based on users and blockchain behaviors models. In IFIP
NTMS International Workshop on Blockchains and Smart Contracts
(BSC), Paris, France, February 2018.

[8] Z. Nehai, P.-Y. Piriou, and F. Daumas. Model-checking of smart
contracts. In IEEE International Conference on Blockchain, Halifax,
Canada, August 2018. IEEE.

[9] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology - EUROCRYPT
2015, pages 281–310, Berlin, Heidelberg, 2015. Springer.

[10] A. Kiayias and G. Panagiotakos. On trees, chains and fast transactions
in the Blockchain. Cryptology ePrint Archive, page 545, 2016.

[11] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing
in bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 507–527, San Juan, Porto Rico, February 2015.
Springer.

[12] E. Anceaume, T. Lajoie-Mazenc, R. Ludinard, and B. Sericola. Safety
Analysis of Bitcoin Improvement Proposals. In IEEE Symposium on
Network Computing and Applications, Boston, United States, October
2016. IEEE.

[13] D. Kraft. Difficulty control for blockchain-based consensus systems.
Peer-to-Peer Networking and Applications, 9(2):19 pages, April 2016.

[14] H. Chraibi. Dynamic reliability modeling and assessment with Py-
CATSHOO: Application to a test case. In International Conference
on Probabilistic Safety Assessment and Management (PSAM), Tokyo,
Japan, April 2013.

[15] H. Chraibi, J.C. Houdebine, and A. Sibler. Pycatshoo: Toward a new
platform dedicated to dynamic reliability assessments of hybrid systems.
In International Conference on Probabilistic Safety Assessment and
Management (PSAM), Seoul, South Korea, October 2016.

